Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions

نویسندگان

  • Alessia Finotti
  • Nicoletta Bianchi
  • Enrica Fabbri
  • Monica Borgatti
  • Giulia Breveglieri
  • Jessica Gasparello
  • Roberto Gambari
چکیده

Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G+C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raptor mediates the antiproliferation of cardamonin by mTORC1 inhibition in SKOV3 cells

Purpose Cardamonin inhibits the proliferation of SKOV3 cells by suppressing the mammalian target of rapamycin complex 1 (mTORC1). However, the mechanism of cardamonin on mTORC1 inhibition has not been well demonstrated. The regulatory-associated protein of TOR (Raptor) is an essential component of mTORC1. Here, we investigated the role of Raptor in the mTORC1 inhibition effect of cardamonin in ...

متن کامل

Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity.

Recent studies have underscored the importance of memory T cells in mediating protective immunity against pathogens and cancer. Pharmacological inhibition of regulators that mediate T cell differentiation promotes the differentiation of activated CD8(+) T cells into memory cells. Nonetheless, pharmacological agents have broad targets and can induce undesirable immunosuppressive effects. Here, w...

متن کامل

The effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats

Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...

متن کامل

The role of TORC1 in muscle development in Drosophila

Myogenesis is an important process during both development and muscle repair. Previous studies suggest that mTORC1 plays a role in the formation of mature muscle from immature muscle precursor cells. Here we show that gene expression for several myogenic transcription factors including Myf5, Myog and Mef2c but not MyoD and myosin heavy chain isoforms decrease when C2C12 cells are treated with r...

متن کامل

Mammalian Target of Rapamycin Complex 1 Suppresses Lipolysis, Stimulates Lipogenesis, and Promotes Fat Storage

OBJECTIVE In metazoans, target of rapamycin complex 1 (TORC1) plays the key role in nutrient- and hormone-dependent control of metabolism. However, the role of TORC1 in regulation of triglyceride storage and metabolism remains largely unknown. RESEARCH DESIGN AND METHODS In this study, we analyzed the effect of activation and inhibition of the mammalian TORC1 (mTORC1) signaling pathway on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2015